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John Lekner
Department of Physics, Victoria University of Wellington, Wellington, New Zealand
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Abstract. Explicit formulae are found for the electric field vectors of the ordinary and
extraordinary modes produced when plane waves of p or s polarization are incident on an
arbitrary face of a uniaxial crystal. The angle of incidence is unrestricted, and the anisotropic
medium may be absorbing. The refiection amplitudes r,,, 7y, 75, Fop, the transmission
amplitudes tog, £y by Lz, 2nd the wavevector and ray directions are then determined in terms
of the direction cosines of the optic axis relative to the laboratory axes.

1. Introduction

The aim of this paper is to produce formulae that enable ellipsometric and reflectance
properties to be calculated, for reflection from a planar surface that has an arbitrary
orientation relative to the crystallographic axes. An extensive literature deals with this
problem, based mainly on a4 X 4 matrix formalism (Teitler and Henvis 1970, Berreman
1971, Azzam and Bahshara 1977, Yeh 1979, 1988). One difficuity in the application of
this formalism is that it is left to the user to transform the dielectric tensor from the
principal-axes frame to the laboratory frame, and to solve the associated eigenvalue
problem. This is done explicitly here, and formulae are derived for the reflection and
transmission amplitudes in terms of the optical constants of the medium and the direction
cosines of the optic axis relative to the laboratory axes.

The laboratory x, y, z axes are defined as follows. The reflecting surface is the xy
plane, and the plane of incidence is the zx plane, with the z axis normal to the surface
and directed into it. When a plane wave is incident, there will be a reflected plans wave,
and (in general) two transmitted plane waves. All components of the electric and
magnetic field vectors E and 8 then have x and ¢ dependence contained in the factor
exp i(Kx — wi), where w is the angular frequency and K is the tangential component of
all the wave vectors. (The notation is that used in a recent monograph on reflection
(Lekner 1987).) There is no y dependence, because of the translational symmetry in
the y direction. Within the anisotropic medium (assumed non-magnetic) the two curl
equations of Maxwell read, after differentiations with respect to time are performed,,

V X E=1kB VxB=—ikD (1)
where k = w/c and D is found from E via the dielectric tensor g,
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(We will see later that &; = ¢;;.) The six equations (1) are, for the geometry specified
above,

—3E,[3z = ikB, -9B,/8z = —ikD,
8E,/8z —iKE, = ikB, dB,/oz —iKB, = —ikD, 3
iKE, = ikB, iKB, = —ikD..

When we eliminate B, we are left with three coupled differential equations in E:
d*E. /82> —iKJE,[0z + k*D, =0 ' 4
3’E,f8z* — K’E, + k*D, =0 (5)
—iK9E, [0z — K*E, + k*D, =0. (6)

We note in passing that iX times (4) plus 3/3z times (6) gives a simple equation linking
D, with D

aD,/8z +iKD,=0. )]

In the isotropic case (&; diagonal), E, is decoupled from £ and E,.

From the differential equations (4) to {6) we can deduce the boundary conditions to
be satisfied at a discontinuity in the medium. The derivative of a discontinuous function
would give a delta function, which cannot be cancelled by any other term in the equation.
Also a derivative of a delta function is not allowed, Thus from (4) it follows that
3E,/3z — iKE_ and E, are continuous (the continuity of E, is also implied by (6)), and
from (5) that 8 E,/9z and E, are continuous. Thus, with reference to (3), we see that the
boundary conditions are the continuity of the tangential components of E and B, as
expected. From (7) we deduce that the normal component of D is continuous, also a
familiar result.

2. Propagation in 2 homogeneous anisotropic material,

The above equations are for an arbitrary z-stratified anisotropic material. We now
specialize to uniform anisotropic media (crystals). We need to find the normal modes,
that is those fields that propagate as plane waves in the medium. Such fields have all
components with the z-dependence exp(igz}, g being the component of the wave vector
normal to the surface. Substitution of this dependence into (4), (5) and (6} gives the
equations

~q*E, + gKE, + k*D, =0 (8)
—(g>+ KDHE, + k*D, =0 9
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gKE, — K*E, + kD, = 0. (10)
A solution for E is possible if the determinant of coefficient is zero, that is if
Eo— @R £y £yt qK/kzl
Eye £y — (K24 gDk &, | =0. (11)
e+ qK/K® €, £, — K2/k?

Equation (11) gives a quartic in ¢, with solutions (eigenvalues) that depend on the
tensor elements &;.

We now consider how &; are determined in terms of the three dielectric constants g,
£y, £, Which are the diagonal elements of &; in the principal-axes coordinate system of
the crystal. Denote the principal axes by unit vectors a, b, ¢, and the laboratory frame
by the unit vectors x, y, z. There are various ways of transforming from one orthogonal
coordinate frame to another, the usual one being by means of a coordinate rotation
matrix expressed in terms of the Euler angles {Yeh 1988). For our purposes it is more
convenient to work with an orthogonal transformation expressed in terms of direction
cosines (Goldstein 1959, ch 4). We have

x=aa+ axb + aje
y=HBia+ Brb+ Bsc (12)
zZ=va+t Yzb -+ Vi€

where o, = x - a is the cosine of the angle between x and a, etc. The inverse trans-
formation is

a=a'1x+ﬁ,y+}f1z
b=arx+ By + vz (13)
c=a3x + By + vz

Note that the matrix of the coefficients of the inverse transformation is the transpose of
the matrix of the original transformation.

The nine direction cosines e . . . ¥; are not independent: the orthonormality con-
ditions x - x = 1 and x + y = 0 (for example) imply

a*“,’ + a’% + ar% =1 a’lﬁ]_ + (Yzﬁz + CY363 =0, (14)

There are six such conditions, and six more (not independent of the first six) arising from
d-a=1,a-b=0,etc. Only three independent parameters are required to specify the
transformation (for example the three Euler angles).

We are now ready to transform from the principal axes to the laboratory frame to
find g, since it is known (Nye 1957) that the elements of the dielectric function form a
second-rank tensor, which transforms according to

Ty= 2 agay Ty (15)
k!

The elements a;, of the transformation are given by the coefficients in (12), and we have
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just seen that the inverse transformation is the transpose of this, so that (15} can be
written as a similarity transformation

Tf,‘ = 2 E ﬂika.réy (16)
k|

where the tilde denotes a transpose. Thus the tensor g; in (2) is to be found from

Er E.ty £ @y &2 o [E, 0 0 [£9] ﬁl Y1
(ny Eyy Ey:) = (31 B B )(0 £, 0 )(W: £: Yz)
€ rx Ezy L] Yi Y2 ¥3 0 0 E.J oy |63 Y3

gai+ it eal £, 51+ e,aBat ey £am Y+ EpYa t EcYS
=g, B+ Eseaf t B B+ efi+ e ELvv i+ e Byt e fyvs |
Bl Y1+ ExtiaYat Ecttsys  Ef\ Yt Eufayetefyys et eviteyd

(17)

We note the &; = g; symmetry of the dielectric tensor follows from the transformation
properties and the assumption of diagonal form for € in some cartesian frame. Born and
Wolf (1970, section 14.1) show that the symmetry of the dielectric tensor is related to
the form taken by conservation of energy in the electromagnetic field, and that this
symmetry implies the existence of principal axes in which the dielectric tensor is diagonal.

3. Dielectric tensor and normal modes in uniaxial crystals

In uniaxial crystals two of the principal dielectric constants &, &, and £, are equal. Let
us denote by £, = nZ the common value of £, and &, and by £, = n? the value of ¢.. The
subscripts o and e stand for ordinary and extraordinary. It is convenient to define the
anisotropy as A¢ = £, — &, and set ;. = &, + Acin (17). Then use of the six orthonor-
mality conditions of the type shown in (14) reduces the dielectric tensor in the laboratory
frame to '

g, + a*As  afAc ayAe
afAe g, + f?Ae ByAe . (18)
ayAe ByAe £, + Y*AE

Here a, B and y stand for o3, 85 and v, the direction cosines of the optic axis (denoted
as the ¢ axis above) in the laboratory frame. The other direction cosines have dropped
out, and the suffix 3 will be suppressed from now on. We note that the dielectric tensor
is equal to g, times the unit tensor of second rank, plus Ae times a symmetric tensor
whose elements are bilinear in the direction cosines &, fand y. The remaining constraints
on the direction cosines are

a’+ fr+yi=1 —-1<a,B,7v<1 (19

(the first relation comes from ¢ - ¢ = 1).
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We are now ready to find the normal modes, the eigenvalues of which are given by
substituting the elements &; from (18) into (11):

e, +atAe—g*k:  afAe ayAe+gK/k?
afie £,+ BPAe~ (K2 +qY)/k*> ByAe =0 (20)
ayAe+gK/k? ByAe £+ yiAe— K3 k?
This quartic in g can be factored into two quadratics: we note that g = + g, where
43 = ek = K? 21)

are solutions of (20). After factoring out g2 — g2, the remaining quadratic is

(g, + Y?A8)q? + (2ayKAg)g — [e,6.k* — K¥e, + a?A£)] =0 (22)
with roots

g. = (xVd - ayKAe)/(e, + Y*A¢) (23)
(the positive sign corresponds to propagation into the crystal), where the discriminant
d is given by

d = g [e (e, + YIAEK? — (g, — B2AE)K?. (24)
From (22) it follows that
[(go + Y?Ag)/Ag](gE - ¢3) = Bek* + (wg, — YK)* +2ayK(g, — q.)- (25)

The right-hand side is non-negative, with zero as minimum value, attained when aqg, =
+ yK and 8 = 0 (optic axis in the plane of incidence). The maximum value g,k? occurs
when %=1 (and «, y = 0), the optic axis then being perpendicular to the plane of
incidence. Thus g2 is bounded by g2 = £,k* — K? and g2 + Ack? = g.k? — K?, these
bounds being reached under the conditions just given.

The ordinary and extraordinary modes have wave vector normal components ¢, and
4., and electric field vectors E° and E°. To find E° and E® we substitute g, and g, for g in
the equations (8) to (10), and obtain three sets of equations of the form Z; b,E; = 0,
where b; are the elements in the matrix corresponding to the determinant in (20). The
corresponding eigenstates have E components proportional to each of the following
parallel vectors:

(bzbs — b3, bisby — bbby, b1sbs3— b13by)
(B12b23 = b13ba. bpbiz—bybx, bibn—b1) (26)
(br3ba — b by, bubsy — b, b b3 = biby).
Thus E° is obtained by substituting ¢ = g, in the array of equation (20). We find
E°® = Ny(—B4q., aq, — vK, K) (27)

where N, is a normalization factor. We note that the electric field vector of the ordinary
mode is always perpendicular to the optic axis ¢ = («a, 8, v). The extraordinary electric
field vector is obtained similarly by substituting g = g, in the array of equation (20), and
using (26). Its components are

E/N, = agl — vq.K
ES/N, = Pek? (28)
ES/N, = v(e.k* — q3) — aq.K
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where N, is the normalization factor for the extraordinary wave.
The scalar product of the ordinary and extraordinary electric field eigenvectors is
E°-E° = BK(aK + 79:)0(g0 — 4 INoNe. (29)

The electric fields are orthogonal when the optic axis lies in the plane of incidence
(8 = 0), at normal incidence (K = 0), in the isotropic limit (g, = ¢.}, and also when
aK + yg, = 0. When the last condition is satisfied, the extraordinary wavevector and
ray direction (given by (31)) are both that of (y, 0, —&), and thus perpendicular to the

optic axis {a, 8, ¥).
The wavevector, giving the direction of the normal to the surface of constant phase,
is given by (K, 0, g) with g = g, or g, for the two modes. The ray direction is given by

KE X B = K(E} + E2) — qE.E,, - E,(KE, + qE,), g(E} + E}) - KE,E, (30)

For the ordinary mode this has the same direction as the wavevector. For the extra-
ordinary mode the ray direction is that of

(a‘h - YK)[aQeK - }’(Eokz - QE)] + ﬁzKeo
BlaK + vq.)q? — q3) (31)
(aq. — YK) (gl — yq K) + BPq.e.k%

The extraordinary ray and wave vector are coplanar with the optic axis. Further discus-
sion of ray direction in special geometries will be given in section 5.

4. The reflection and transmission amplitudes

To calculate the reflection and transmission of an incoming wave plane-polarized in an
arbitrary direction, we decompose the incoming field into its s and p components, where
E, is perpendicular to the plane of incidence (the zx plane) and E,, lies in the plane of
incidence. We consider the s polarization first. The z-dependence of the electric field
components is

incoming: (0, exp(ig,2), 0)
reflected: (repcos B exp(—ig;z), r exp(—iq,z), rg, sin 8 exp(—ig,2) (32)
transmitted: ¢, exp(igoz)(ES, ES, ES) + t, exp(ig.z)(ES, ES, ES)
where @ is the angle of incidence, g is the z-component of the incoming wave vector,
and 7y, #5p, 15, and 2, are the reflection and transmission amplitudes for an incoming s
wave, Atthe end of section 1 we deduced the boundary conditions to be applied, namely
the continuity of E,, E,, 9E,/dz — iKE,, and dE,/dz. At the reflecting plane (z =0)
these give
rpCOs 8 =t ET + 1, ES
14 rg =13 + 1, E

33
=175 05 8 — Krpsin 8 = gt ES + qot ES — K(1,,ES + £, ES) 33)
QI(I - rss) = q«:zsoE; + QetseE;-

These four equations may be solved for the four unknowns r, ry,, o, - We find
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T = [(QI - Qe)AE; - (‘Il - ‘IO)BE;]/D
re =2mk(AES — BE?)/D (34)
I = _ZQIB/D le = _2QIA/D
where n, = £} is the refractive index of the medium of incidence, and
A=(g,+q,+ Ktan 8) E¢ — KE?
B=(g.+qg,+Ktan 8) E% — KE$ (35)
D =(g; + q.)AE; - (g, + g,)BE}.
The isotropic limit is obtained by letting Az — 0. We find that the isotropic limit of
Etis
E¢— Ne(qo(aqo - YK): ﬁsokzv —K(O"QD - YK)) (36)
This E° is perpendicular to E°, in accord with (29). The reflection and transmission
amplitudes in the isotropic limit tend to
rﬁa(QI_QO)/(41+QO) -rsp_’O
b {ZQI/(QI + Qo)](a'QO - '}’K)No le—> [ZQI/(‘h + qo)]ﬁgokzNe-
The reflection amplitude for s to s polarization reproduces the Fresnel equation (see for

example Lekner (1987), equations 1.13 and 1.14). The transmission amplitudes are such
that the transmitted field is pure sin this isotropic limit, with the usual Fresnel amplitude:

(37)

i‘seE“:' + [seEe - [2q 1/(‘11 + qo)](01 15 0) (38)
This result follows from (27), (36) and the fact that
Ngz' = Jﬁzsokz + (aq, — YK)Z N£—> A%/Eokz- (39)

We next turn to the reflection of the p wave. The z-dependence of the electric field
components is, for incidence at 8 to the surface normal,

incoming: (cos 6 exp(ig,2), 0, —sin & exp(ig,z)
reflected: (rpp cOs 0 exp(—iq,2), rys exp(—ig,2), ryp sin 8 exp(—ig,z) (40)
transmitted: 1, exp(ig.z)(ES, EY, ES) + t,. exp(ig.z)(E;, E}, E3).
The continuity of E,, E,, 8E,/0z — iKE, and 6E,/oz at z = 0 gives
cos O(1 + rp) = £pEL + 15 ES
Tos = tpoky + tp ES 1)
k(1= 1) = qotpoEs + getpeEs — K(tE + toE%)

~q1Fps = thPOEg + QetPEE;
(we have used the fact that ¢, cos 8 + K sin 8 = n,k = £}/%k). The solution of (41) is

reo = (24/D)(q1 + 9 )EE; — (g1 + qo)ESES] —1
Fes = 211k(q. — o)ESES/D
po = 2nyk(g, + Qc)E;/D
toe = —2n1k(gy + do)ES/D.
The denominator D is as defined in (35), and

(42)
t
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q,=q, + Ktan 8 = £,k%/q,. ' (43)

(The reader is reminded that ¢, = kn; cos 8, K = kn, 5in 6.)
In the isotropic limit we find, using the notation @, = q,/¢,, @ = Go/0s

rppq(Qo_Ql)/(Qo'!' Ql) rps_>0
tpo—> — 20,/(Q1 + Qo)Ik*nn BN, (44)
Ipe - [ZQI/(QI + Q;)](nl/no)(a"?O - YK)No-

The reflection and transmission amplitudes are in accord with the known results for
isotropic media: see for example Lekner (1987), equation (1.31). Note that the trans-
mitted electric field amplitude is

E— [20,/(21 + Q)l(r:/2k) (40, 0, —K) (45)
which has magnitude
|E|— [20:/(Q1 + Qo)l(r:1/n,) (46)

and (from (3)) corresponds to a magnetic field along the y axis.
The s to p and p to s reflection amplitudes may be factored to show the conditions
under which they are zero:

rop = 2B(aqo + YK)(ge — go)k’nigoNoN /D
res = 2B(aq, — YK)(ge — qo)kn g NoN./D.
Both are zero when the optic axis lies in the plane of incidence. The difference
Fop — Fes = 4B7K(ge — go)k’n e.NN./D (48)

is also zero when the optic axis lies in the reflecting plane (y = 0), and at normal incidence
(K =0).

(47)

5. Special geometries

The reflection and transmission amplitudes for electromagnetic waves incident on an
arbitrary face of a uniaxial anisotropic medium are given by (34) and (42) for incident s
and p polarizations. We now look at some important special configurations.

5.1. Reflection from a basal plane (one perpendicular to the optic axis)

‘When the normal to the reflecting surface coincides with the optic axis, the system has
azimuthal symmetry. The direction cosines are y = =1, & = 0 = 8. The eigenvalues for
the normal component of the wave vector are given by g2 = £,42? — K2 (as always) and

q% = 5nk2 - (Eo/se)Kz- (49)

The eigenstates are (taking y = —1, with the optic axis out from, and z axis into the
reflecting plane),

E°= (O’ 1: 0) E¢ = Nc(‘?c’ 0’ _(go/ac)K) (50)

The cross reflection amplitudes r, and 7, are zero, and
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rm=(QI_QO)/(QI+qD) rpp=(Q_Q1)/(Q+Q1) (51)

where Q = g./¢,, and Q, = ¢,/¢, as before. In the absence of absorption the *pp COCE-
ficient is zero at a Brewster angle given by

tan263 = &q(&, — 81)/£1(£e - 81) (52)

(note that a real 85 will not exist when &, lies between ¢, and &,). These results have
been given previously (Lekner 1987, section 7-1; see also Azzam and Bashara 1977, pp
354-355 for formulae and references relevant to this and the next subsection). The
transmission amplitudes are

ty = 2?1/(91 + ‘?o) e = 0 tpo =0 tpe = [(ZQL/(QI + Q)](nlfeokNe)(-s3)

5.2. Reflection from a plane parallel to the opiic axis

The optic axis now lies in the reflecting plane (an example is reflection from a prism face
ofice). Let @ be the angle between the optic axis and the x axis. In terms of the azimuthal
angle ¢, the direction cosines are @ = cos ¢, f = + sin ¢, v = 0. The g eigenvalues are
given by g2 = g,k* — K% and

q% = qg + (A'“3/'-‘:0)(’f':m"":2 - a'sz)' (54)
The eigenvectors are

E° = N,(-8q., ®q,, BK) E® = N (aq}, Bek?, — ag K) (55)
N3Z=g k? — a’K? N72= N7 ek? + (Ag/e,)a*K?)
with

E°«Et= a’ﬁKzNoNe(qO - ‘Ie)- (56)

The extraordinary ray direction is that of (K(g, + a?As), afKAe, g.5,).
We now look at the reflection amplitudes, starting with the cross terms, since these
are simpler. Using the fact that (for y = ()

A=- BNU(EokZ + qu‘]t) B= “Ne(soszh + ng:) (57)
we find that
Fop = Fps = zaﬁqo(QG - ‘Itz)r“lk/"-)r . (58)
where
D o )
f o . >0 k2 — o2K?
D' = = . = @+ 40 (G2 1) (eok? - 2K

+(ge — g0) (£°k2 - a’K? + ?(elkz - azKQ)) (59)
1

with O, = g,/¢, as before, and O, = ¢,/,. Note that the cross reflection amplitudes are
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zero when the optic axis is parallel or perpendicular to the plane of incidence. The direct
reflection amplitudes are given by

D'r= (01 =40 (S2+1) (eok? ~ @K ~ (@ = 42

x (e,,kz — 2K+ Lo g 42 — a3(2e k2 - KZ)])
) (60)
=@+ 49 (52- 1) ok - KD = (4. = 00

X (sokz - a’K? — gg[slkz — o*(2e, k2 - Kz)])
1

The s to s and p to p reflection amplitndes depend on &? = cos? p. As a function of the
azimuthal angle @ they will thus have extrema when cos® @ = 1 or 0, that is when
the optic axis is parallel or perpendicular to the plane of incidence. In these special
configurations the cross reflection amplitudes are zero; in the parallel case g, = gn./n,,
and

cllx

re =g _QO)/(QI +q,)
=0 or =& B B (61)
o= =1, ﬁ=0 PP_(Qc Ql)/(gc+Ql)

where Q. = q./nt. = g./c.. The p to p reflection amplitude is zero at a Brewster angle
of incidence given by
tan’ eB = Eo(£c - 81)/81(80 - El)' (62)

As in the case above (see equation (52)), a real 8; does not exist when £, lies between
g,and g,.
When the optic axis is perpendicular to the plane of incidence, g2 = £.k% — K? and

clx
o=a/2 or 32 re = (g1 = 4)/(q1 + qe) ©3)
m0.fm 21 = (Q.— 2/(@. + Q).
The p to p refiection amplitude is zero at a Brewster angle given by
tan? @y = £,/€, or  tan @y =n,/n,. (64)

The results for the special configurations where the optic axis is parallel or perpendicular
to the plane of incidence are in agreement with those of Elshazly-Zaghou! and Azzam
(1982).

5.3. Optic axis in the plane of incidence

For the geometry used throughout this paper, the plane of incidence is the zx plane.
Thus in this subsection the optic axis is perpendicular to the y axis, and § = 0. The
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eigenvalues of the normal! component of the wave vector are ¢,, and g, as given by (23),
with

d = g,elq? + y’Ack?). 63)
The plane-wave propagating modes are orthogonal in this configuration:

E°= N0, ag, — yK, 0) E*=N(g.K + ayAck?, 0, g2 ~ e ,k? — a?Ack?).
(66)

The extraordinary ray lies in the plane of incidence: its direction is that of (ag K —
y(g.k? — ¢2), 0, ag® — vq.K). The s to p and p to s reflection amplitudes are zero, and

re = (g1~ q.)/(q:1 + q5) (67)

as expected. The p to p reflection amplitude is

. - K(aeg, — £7) — ahely(g. - ¢) + aK]K?
P K(geq, + £ok7) + ahe[y(g. + q.) + aK]k?

(68)

where ¢, = g, + K tan @ = ¢,k%/q, = k*Q7! as before. This expression reduces to (51)
when & = 0(reflection from a basal plane) and to (61) when & = 1 (optic axisin reflecting
plane and in plane of incidence).

5.4. Normal incidence

The final special configuration we consider is that of radiation incident perpendicularly
onto the reflecting surface (& = 0). When K = kn, sin @ is set to zero in our general
formulae, the eigenvalues and eigenvectors become

qo = kn, q.= knone/ny (69)
E° = No(_ﬁ? o, O) Ec(a! ﬁ! —‘y(l —YZ)AE/E}') (70)

where n = g, = &, + y?Ae (&, ranges from ¢, to &, taking the value g, when the optic
axis lies in the reflecting plane, and &, when the optic axis coincides with the surface
normal). The ray direction is given by (ayAe, ByAe, £,). For various orientations of the
crystal axes the rays lie within a circular cone with the inward normal as axis, and half-
angle equal to arctan(|Ag|/2nn.). Maximum deviation from the normal occurs when
2
Y= 80/(80 + Ee)'
The reflection amplitudes are found from (34) and (42):

_ az(nl - no)(nlny + none) + ﬁz(nl + no)(nlny — none)

s (@® + B2 (ny + no)(nin, + non.) 7
_ (g + no)(niny, — nonte) + BHny — no)(mny, + none) 72

Fop = (& + BB (1 + no)(mny + non,) 7

. 2aﬁn1n°(ny - nc) (73)

=¥ = '
*? F (az + ﬁz)(nl + no)(nlny + none)
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When the optic axis lies in the reflecting plane (y = 0, o + 8% = 1), these formulae
reduce to

21 T Rg w e (ny + no)ny . n.) '_"__2“2”1_(”:, — 1)
=a2——24(1— = 74
s = O n +n, ( a)n,-‘rne (ny +n.)(ny +n,) 74)
mimme = (ng = ng)(m +ng) = 2aimy(n, = no)
Top = & n, +n=+(1 w)nl+no (ny + no)(n, +n,) (75)
2 _
tp =T &’ﬁﬂ](no ne) - ] (76)

P ("1 + no)("l + nc)-

These results agree with those of subsection (b) above, when K is set to zero in the
formulae (58) to (60). The y = 0 results also agree with Yeh 1988, equations 9.6-48 to
50, but not with his r,, expression.

The transmission amplitude depend on the factors N, and N, which normalize E° and
E to unit magnitude. These are given by

NZ=1-9"  N22=N1+ 71 - y)(aefe,)?. (77
From (34) and (42) we find
_ o 2?15 _ 6Ne_1 Zﬂ]ﬂy
fo = Va? + 32 ny+n, Fre = ot + 32 n.ln? + notte (78)
- _ B 2n, — aNe' 2nn,
fpo = .\/a,z + ﬁz ny+n, [PC - a? + ﬁ2 nn, + nonc' (79)

When the reflection is from a plane parallel to the optic axis (y = 0) these formulae
simplify to

to =a2n,/(n +n,) te=B2n/(n, + n.) (80)
bpo = — ﬁznl/(nl +n,) Lpe = a'znl/(nl + 1) (81)
The y = 0 subset is consistent with that of Yeh (1988), p 237.

6. Summary and discussion

We have presented explicit formulae for the reflection and transmission amplitudes for
the s and p polarized electromagnetic waves incident on an arbitrary face of a uniaxial
crystal. The results are expressed in terms of the direction cosines of the optic axis
relative to the laboratory axes, where xy is the reflecting surface, and zx is the plane of
incidence. The ordinary and extraordinary electric fields, wavevectors and ray directions
are also determined explicitly.

Some special configurations of practical interest were considered. These help also in
providing counter-examples to conjectures one might make, for example that the cross-
reflection terms r,; and r, are zero whenever E° and E* are orthogonal (this is not true
in general, since E° - E* = Q at normal incidence (from (70)), butr,, and r,; are not zero).
It is not even true that 7, = r,, whenever E°+ E* = 0. Another expectation, that the.
Brewster angle 8y will lie between arctan (n,/n,} and arctan (n./n,), is also false. In fact
zero reflectance of the p polarization need not exist in some circumstances, in contrast
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to reflection from non-absorbing isotropic media. But arctan (n./#,) isan upper or lower
bound for &y in some special peometries; see for example subsection 5.2,

Gaussian units have been used for simplicity, and to avoid confusion between
&, (=n2) and g; (the permittivity of the vacuum). All formulae from equation (11) on
are unchanged in SI units, provided the dielectric constants are interpreted as the
dimensionless ratios £/ &,.

In numerical work it is convenient to use n,/n, and n./n; as the effective ordinary
and extraordinary refractive indices, and also to set k = w/c = 1, in which case ¢, and
K may be set equal to cos 8 and sin & respectively.

Acknowledgment

This work was carried out at the University of Washington, where I enjoyed the kind
hospitality of Greg Dash, and the stimulus of conversations with him about surface
melting, and with Michael Elbaum concerning reflectivity measurements on clean facets
of ice crystals.

References

Azzam R M A and Bashara N M 1977 Ellipsometry and Polarized Light (Amsterdam: North-Holland)
Berreman D W 1971 1. Opt. Soc. Am. 62 502

Born M and Wolf E 1970 Principles of Optics 4th edn (Oxford: Pergamon)

Elshazly-Zaghoul M and Azzam R M A 1982 J. Opt. Soc. Am. 72657 (errata: 1989J. Opt. Soc. Am. A6 607)
Goldstein H 1959 Classical Mechanics (London: Addison-Wesley)

Lekner J 1987 Theory of Reflection (Dordrecht: Nijhoff/Kluwer)

Nye J F 1957 Physical Properties of Crystals (Oxford: Clarendon}

Teitler 5 and Henvis B W 1970 J. Opr. Soc. Am. 60 830

Yeh P 1979 ], Opt. Soc. Am. 69742

Yeh P 1988 Optical Waves in Layered Media (New York: Wiley)



