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Abstract. Explicit formulae are found lor the electric field vectors of the ordinary and 
extraordinary modes produced when plane waves of p or s polarization are incident on an 
arbitrary faceofauniaxialcrystal. The angleofincidenceisunrestricted, and theanisotropic 
medium may be absorbing. The reflection amplitudes rpp. rV, r,,, re. the transmission 
amplitude st,,^,. c,r, ,  and the wavevectorand raydirectionsare thendeterminedin terms 
of the direction cosines of the optic a d s  relative to the laboratory axes. 

1. Introduction 

The aim of this paper is to produce formulae that enable ellipsometric and reflectance 
properties to be calculated, for reflection from a planar surface that has an arbitrary 
orientation relative to the crystallographic axes. An extensive literature deals with this 
problem, based mainly on a 4 X 4 matrix formalism (Teitler and Henvis 1970, Berreman 
1971, Azzam and Bahshara 1977, Yeh 1979,1988). One difficulty in the application of 
this formalism is that it is left to the user to transform the dielectric tensor from the 
principal-axes frame to the laboratory frame, and to solve the associated eigenvalue 
problem. This is done explicitly here, and formulae are derived for the reflection and 
transmissionamplitudesin termsoftheopticalconstantsofthemediumand the direction 
cosines of the optic axis relative to the laboratory axes. 

The laboratory x ,  y ,  z axes are defined as follows. The reflecting surface is the xy 
plane, and the plane of incidence is the zx plane, with the z axis normal to the surface 
and directed into it. When a plane wave is incident, there will be a reflected plan- - wave, 
and (in general) two transmitted plane waves. All components of the electric and 
magnetic field vectors E and B then have x and t dependence contained in the factor 
exp i(Kx - ut), where w is the angular frequency and K is the tangential component of 
all the wave vectors. (The notation is that used in a recent monograph on reflection 
(Lekner 1987).) There is no y dependence, because of the translational symmetry in 
the y direction. Within the anisotropic medium (assumed non-magnetic) the two curl 
equations of Maxwell read, after differentiations with respect to time are performed,, 

V X E = i k B  V x B = - i m  (1). 

where k = u / c  and D is found from E via the dielectric tensor E#:'  
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(We will see later that cb = E ~ ~ . )  The six equations (1) are, for the geometry specified 
above, 

-aE,/az = ikB, 

iKE, = ikB, 

-aB,/dz = -ikD, 

iKB, = -ikD,. 

aE,/az - iKE, = ikB, aB,/az - iKB, = -ikD, (3) 

When we eliminate E ,  we are left with three coupled differential equations in E: 

dZE,/dz2 - iKaE,/az + kZD, = 0 (4) 

azEy/az2 - K’E, + klD, = 0 

-iK aE,/az - @E, + kZD, = 0. 

We note in passing that iK times (4) plus a/az times (6) gives a simple equation linking 
D, with D,: 

aD,/az + iKD, = 0. (7) 

In the isotropic case ( E ~ ~  diagonal), E, is decoupled from E, and E,. 
From the differential equations (4) to (6) we can deduce the boundary conditions to 

be satisfied at a discontinuity in the medium. The derivative of a discontinuous function 
wouldgive adeltafunction, whichcannot becancelled by any other term in the equation. 
Also a derivative of a delta function is not allowed. Thus from (4) it follows that 
aEx/az - iKE, and E, are continuous (the continuity of E, is also implied by (6)). and 
from (5) that J E,/& and Ey are continuous. Thus, with reference to (3), we see that the 
boundary conditions are the continuity of the tangential components of E and E ,  as 
expected. From (7) we deduce that the normal component of D is continuous, also a 
familiar result. 

2. Propagation in a homogeneous anisotropic material, 

The above equations are for an arbitrary z-stratified anisotropic material. We now 
specialize to uniform anisotropic media (crystals). We need to find the normal modes, 
that is those fields that propagate as plane waves in the medium. Such fields have all 
components with the z-dependence exp(iqz), q being the component of the wave vector 
normal to the surface. Substitution of this dependence into (4), (5) and (6) gives the 
equations 

,-q2E, + qKE, + k2D, = 0 

- (q2 + KZ)Ey + k’D, = 0 

(8) 

(9) 



EYZ cYy - ( K z  + qz)/k2 cyr 

k l  

The elements a, of the transformation are given by the coefficients in (12), and we have 

= 0. (11) 
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just seen that the inverse transformation is the transpose of this, so that (15) can be 
written as a similarity transformation 

where the tilde denotes a transpose. Thus the tensor in (2) is to be found from 

0 0 a1 B ,  YL 

&.BIYL + E a p 2 Y > +  E<B?Y3 

E.Lrf,+ Ea=: + €,a: E.aIBI +Eb%f%+E<(Y?A E D W l Y I  + E b U I Y > +  E.O,Y, 

~ & $ I + E b a 5 2 + E c a ? J ? 3  Ed%+Ed:+E& 

E.alY,.+ Eba*Y*+&ce,y? EdBIYI +E*B2Y*+Erl91Y? E . Y : + E b Y : + E A  

(17) 

We note the =  symmetry of the dielectric tensor follows from the transformation 
properties and the assumption of diagonal form for E in some Cartesian frame. Born and 
Wolf (1970, section 14.1) show that the symmetry of the dielectric tensor is related to 
the form taken by conservation of energy in the electromagnetic field, and that this 
symmetry implies the existence ofprincipal axes in which the dielectric tensor is diagonal. 

3. Dielectric tensor and normal modes in uniaxial crystals 

In uniaxial crystals two of the principal dielectric constants ea, .zb and E~ are equal. Let 
us denote by E ,  = n’, the common value of and E ~ ,  and by E ,  = n: the value of E,. The 
subscripts o and e stand for ordinary and extraordinary. It is convenient to define the 
anisotropy as A E  = - E,, and set E, = E, + A& in (17). Then use of the six orthonor- 
mality conditions of the type shown in (14) reduces the dielectric tensor in the laboratory 
frame to 

Here a, /3 and y stand for cy3, +P, and y 3 ,  the direction cosines of the optic axis (denoted 
as the c axis above) in the laboratory frame. The other direction cosines have dropped 
out, and the su& 3 will be suppressed from now on. We note that the dielectric tensor 
is equal to E~ times the unit tensor of second rank, plus A& times a symmetric tensor 
whoseelementsare bilinearin the directioncosines &,band y. The remainingconstraints 
on the direction cosines are 

cy2 + p* + y* = 1 -1 s ff,p, y s  1 (19) 

(the first relation comes from c . c = 1). 



(YPAE E ,  + p 2 A ~  - ( K 2  + q2) /k2  PYAE = 0. (20) 



6126 J Lekner 

where Ne is the normalization factor for the extraordinary wave. 
The scalar product of the ordinary and extraordinary electric field eigenvectors is 

Ea. EF = BK(CYK + yq&?. - q,)NoNe.  (2% 
The electric fields are orthogonal when the optic axis lies in the plane of incidence 
@ = 0), at normal incidence (K = 0), in the isotropic limit (q. = qe), and also when 
0rK + yqe = 0. When the last condition is satisfied, the extraordinary wavevector and 
ray direction (given by (31)) are both that of ( y ,  0, -CY), and thus perpendicular to the 
optic axis (CY, f i ,  U). 

The wavevector, giving the direction of the normal to the surface of constant phase, 
is given by (K, 0, q)  with q = qa or qe for the two modes. The ray direction is given by 
kE X E = K(E: + E:) - qE,E,, -E,(KE, + qE,), q(E: + E:) - KE,E,. (30) 
For the ordinary mode this has the same direction as the wavevector. For the extra- 
ordinary mode the ray direction is that of 

( m q ,  - yK)[aq,K - y(&,k2 - 431 + P’KG 

B(aK + y q e ) ( d  - 42) 
(U% - Y K ) ( 4  - yq,K) + B2qeEok2. 

(31) 

The extraordinary ray and wave vector are coplanar with the optic axis. Further discus- 
sion of ray direction in special geometries will be given in section 5. 

4.The reflection and transmission amplitudes 

To calculate the reflection and transmission of an incoming wave plane-polarized in an 
arbitrary direction, we decompose the incoming field into its s and pcomponents, where 
E, is perpendicular to the plane of incidence (the zx plane) and E, lies in the plane of 
incidence. We consider the s polarization first. The z-dependence of the electric field 
components is 

incoming: (0, exp(iqlz), 0) 

reflected: (rrpcos Bexp(-iq,z), r,exp(-iq,z), rrp sin Bexp(-iqlz) (32) 
transmitted: 

where 0 is the angle of incidence, q ,  is the z-component of the incoming wave vector, 
and r,, rsp, tm and tse are the reflection and transmission amplitudes for an incomings 
wave, At the end of section 1 we deduced the boundary conditions to be applied, namely 
the continuity of E,, Ey, aE&z - iKE,, and dE,/az. At the reflecting plane (z = 0) 
these give 

rspcos e = t,,E; + t,E: 

1 + rsr = t,E; + &,E; 

-qjrsp cos 0 - Krsp sin 8 = qot,,E; + q,t,E: - K(t,E; + tsE:) 

t ,  exp(iqoz)(E:, E;, E;) + trs exp(iq,z)(E:, E;. E:) 

(33) 

4d1 - rsJ = qots0EyO + Qef,,E;. 
These four equations may be solved for the four unknowns r,, rsp, tso, tse. We find 
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rs = [(qi - qe)AE; - (41 - qJBE;l /D 
rsp = 2n,k(AE: - BE;)/D 

6127 

(34) 
t,, = -2qlB/D t,, = -2qlA/D 

where n1 = E ~ D  is the refractive index of the medium of incidence, and 
A = (qo + 41 + K tan e) E: - KE: 

B = (4, + q1 + K tan e) E: - KE; 

D = (41 + 4,)AE; - (41 + q,)BE,O. 

Be-+ Ne(qo(aqo - Y K ) ,  -K(Cuq, - Y K ) ) .  (36) 

(35) 

The isotropic limit is obtained by letting A&-+ 0. We tind that the isotropic limit of 
Ee is 

This E' is perpendicular to E", in accord with (29). The reflection and transmission 
amplitudes in the isotropic limit tend to 

(37) 
rJr+ (91 - 9 N 4 1  + 4.) rsp -+ 0 

L+ [241/(41 + 4 o ) l ( ~ ~ o  - YWNO 
The reflection amplitude fors to s polarization reproduces the Fresnel equation (see for 
example Lekner (1987), equations 1.13 and 1.14). The transmission amplitudes are such 
that the transmitted fieldispure sin thisisotropiclimit, with the usualFresne1 amplitude: 

This result follows from (27), (36) and the fact that 

G e +  [%i/(q, + 40)18Eok2Nc 

f a h 0  + [de+ [%1/(4* + 4 m 4  1 3  0). 

N i 2  = P2E,kZ + (aq, - YK)' 

(38) 

(39) Nf + @/EokZ. 
We next turn to the reflection of the p wave. The r-dependence of the electric field 

components is, for incidence at 0 to the surface normal, 
incoming: (cos 0 exp(iqlz), 0, -sin tJ exp(iqlr) 

reflected: (rppcos Bexp(-iq,r), rpsexp(-iqlz), rpp sin Bexp(-iqIz) (40) 
transmitted: tp exp(iq.r)(E;, E;, E;) + tpe exp(iq,r)(E:, E;, E;) .  
The continuity of Ex, Ey,  aE&r - iKE, and aEy/az at z = 0 gives 

cos O(1 + rpp) = tpoE,D + ?,E: 

-41rps = q J p &  + 4etpcE; 
(we have used the fact that q1 cos 0 + K sin 0 = nlk = ~ f b k ) .  The solution of (41) is 

rpp = (24" + 4 X E ;  - (41 + 4,)E:E;I- 1 
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q,=q l  + K t a n 0 = q k 2 / q l .  (43) 
(The reader is reminded that q1 = kn,  cos 0, K = kn ,  sin e.) 

In the isotropic limit we find, using the notation Q, = q l / E l r  Q, = qo/c0, 

The reflection and transmission amplitudes are in accord with the known results for 
isotropic media: see for example Lekner (1987), equation (1.31). Note that the trans- 
mitted eiectric field amplitude is 

E +  P Q i J ( Q 1  + QJI(ni/~&)(qo, 0, - K )  (45) 

/El+ [2Q1/(Q1 + Qo)l(nl/no) (46) 

which has magnitude 

and (from (3)) corresponds to a magnetic field along they axis. 

under which they are zero: 
The s to p and p to s reflection amplitudes may be factored to show the conditions 

Both are zero when the optic axis lies in the plane of incidence. The difference 

isalsozerowhen theopticaxisliesinthereflectingplane (‘J = 0), andat normalincidence 
( K  = 0). 

5. Special geometries 

The reflection and transmission amplitudes for electromagnetic waves incident on an 
arbitrary face of a uniaxial anisotropic medium are given by (34) and (42) for incident s 
and p polarizations. We now look at some important special configurations. 

5.1, Reflection from a basal plane (one perpendicular to the optic axis) 

When the normal to the reflecting surface coincides with the optic axis, the system has 
azimuthal symmetry. The direction cosines are y = Z? 1, a = 0 = p. The eigenvalues for 
the normal component of the wave vector are given by qz = E,kZ - K Z  (as always) and 

q: = e ,kZ  - (E,/E,)KZ. (49) 
The eigenstates are (taking ‘J = -1, with the optic axis out from, and z axis into the 
reflecting plane), 

EO = (0, 1,O) Ee = N d q , ,  0, - (E , /EAK)  (50) 

The cross reflection amplitudes rp  and rrp are zero, and 
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r s  = (41 - Po)/(41 + q o )  rpp = (Q - Qd/(Q + Qd (51) 

where Q = qe/eo, and Q, = ql/El as before. In the absence of absorption the rpp coef- 
ficient is zero at a Brewster angle given by 

tan2& = E,(&, - E , ) / E ~ ( E .  - E , )  (52) 

(note that a real 8, will not exist when E ,  lies between E~ and E ~ ) .  These results have 
been given previously (Lekner 1987, section 7-1; see also Azzam and Bashara 1977, pp 
354-355 for formulae and references relevant to this and the next subsection). The 
transmission amplitudes are 

5.2. Refection from aplaneparallel to the optic axis 

The optic axis now lies in the reflecting plane (an example is reflection from a prism face 
of ice). Let q be the angle between the optic axis and the x axis. In terms of the azimuthal 
angle q, the direction cosines are a = cos q, p = 2 sin q, y = 0. The q eigenvalues are 
given by q: = &,kZ - K 2  and 

q: = + (A&/EJ(E,,k* - a 2 K 2 ) .  (54) 
The eigenvectors are 

Eo = N J - B q , ,  mq,, BK) 
N i 2  = &,k2 - (rZp 

with 

E e  = Ndw:, BE&', - w , K )  
(55) 

NF2 = N;Z(e,kZ + (A&/&,)m2K2) 

E o *  Ee = a&V2N,N,(q, - qe).  (56) 

We now look at the reflection amplitudes, starting with the cross terms, since these 
The extraordinary ray direction is that of ( K ( E ~  + a 2 A s ) ,  aBKA&, q.E,,). 

are simpler. Using the fact that (for y = 0) 

A = - PNo(Eokz + q o q J  B = aNe(Eok2qe + d q r )  (57) 

we find that 

D D' = - = ( q ,  + qo) (f + 1) (E,k2 - m2KZ) 
c,kZN,N, 1 

+ ( 4 .  - 4.) (Eok2 - mZKZ + %(Elk2 41 - azK?)) (59) 

with Q, = ql/E1 as before, and Q, = q , / E , .  Note that the cross reflection amplitudes are 
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zero when the optic axis is parallel or perpendicular to the plane of incidence. The direct 
reflection amplitudes are given by 

D’r, = (41 - 4.) ($ + 1 )  (E.&’ - - (4. - qJ 

The s to s and p top reflection amplitudes depend on a’ = cos’ q. As a function of the 
azimuthal angle q they will thus have extrema when cos2 q = 1 or 0, that is when 
the optic axis is parallel or perpendicular to the plane of incidence. In these special 
configurations the cross reflection amplitudes are zero; in the parallel case 4. = q$Jne, 
and 

where Q, = q,/n,,nn, = q./Ee. The p to p reflection amplitude is zero at a Brewster angle 
of incidence given by 

tan2 ee = E,(&, - E ~ ) / C , ( E ~  - (62) 

As in the case above (see equation (52)), a real 0, does not exist when 
E,, and 

lies between 

When the optic axis is perpendicular to the plane of incidence, 4: = E,k’ - K2 and 

The p to p reflection amplitude is zero at a Brewster angle given by 

t d  ee = &,/E, or tan OB = n,/nl.  (64) 
The results for the special configurations where the optic axis is parallel or perpendicular 
to the plane of incidence are in agreement with those of Elshazly-Zaghoul and Azzam 
(1982). 

5.3. Optic axis in the plane of incidence 

For the geometry used throughout this paper, the plane of incidence is the zx plane. 
Thus in this subsection the optic axis is perpendicular to the y axis, and f3 = 0. The 
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eigenvalues of the normal component of the wave vector are q.,, and q. as given by (23), 
with 

d = eoee(qz + yzA&k2). (65) 

The plane-wave propagating modes are orthogonal in this configuration: 

En = N,(O, aq, - y K ,  0) E' = N,(q,K + UyAEk', 0,q: - E,k2 - a2AEkz). 
(66) 

The extraordinary ray lies in the plane of incidence: its direction is that of (aq,K - 
y(E,,k2 - q:), 0, aq: - yq,K). The s to p and p to s reflection amplitudes are zero, and 

r ,  = (41 - q J / ( q ~  + q J  (67) 

as expected. The p to p reflection amplitude is 

(68) 
K(qeqt - E&') - aA4Y(qe - 4 3  + 4 k 2  

' p p  = K(q,q, + E,k2) + aA&[y(q, + q,) + nKJk2 

where q, = q1 + Ktan 0 = ElkZ/q1 = k2Qi' as before. This expression reduces to (51) 
when (Y = 0 (reflection from a basal plane) and to (61) when a = 1 (optic axisin reflecting 
plane and in plane of incidence). 

5.4. Normal incidence 

The final special configuration we consider is that of radiation incident perpendicularly 
onto the reflecting surface (0 = 0). When K = knl sin 0 is set to zero in our general 
formulae, the eigenvalues and eigenvectors become 

q o  = kno 4 .  = knone/ny (69) 

E o  = No(-@,  a, 0) (70) EYE, P ,  - ~ ( l  - vZ)A&/&,) 

where n: = = E ,  + yZA& (&,ranges from E, to E ~ ,  taking the value E., when the optic 
axis lies in the reflecting plane, and when the optic axis coincides with the surface 
normal). The ray direction is given by ( a y A ~ ,  PYA&, E,). For various orientations of the 
crystal axes the rays lie within a circular cone with the inward normal as axis, and half-. 
angle equal to arctan(lAel/2nn,n,). Maximum deviation from the normal occurs when 
Y 2  = + 4. 

The reflection amplitudes are found from (34) and (42): 

(71) 
- n,) (n~n,  + non,) + P ( n 1  + no)(nln, - none) 

(a2 + B z h  + n , ) h n ,  + none) 
r,, = 
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When the optic axis lies in the reflecting plane ( y  = 0, a' + P2 = I), these formulae 
reduce to 

These results agree with those of subsection (b) above, when K is set to zero in the 
formulae (58) to (60). The y = 0 results also agree with Yeh 1988, equations 9.648 to 
50, but not with his rpp expression. 

The transmission amplitude depend on the factors No and Ne which normalize Ea and 
Ec to unit magnitude. These are given by 

N,2 = 1 - y 2  N;' = N;'[1 + y'(1 - ~ ' ) ( A E / E , ) ' ] .  (77) 
From (34) and (42) we find 

When the reflection is from a plane parallel to the optic axis ( y  = 0) these formulae 
simplify to 

t ,  = a2nl/(n1 + no) 

tpo = - P h , / ( n , +  no) 

t,, = P 2nI/(nI + n e )  (80) 

(81) rpc = a2nI/(nl  + ne) .  
The y = 0 subset is consistent with that of Yeh (1988), p 237. 

6. Summary and discussion 

We have presented explicit formulae for the reflection and transmission amplitudes for 
the s and p polarized electromagnetic waves incident on an arbitrary face of a uniaxial 
crystal. The results are expressed in terms of the direction cosines of the optic axis 
relative to the laboratory axes, where xy is the reflecting surface, and zx is the plane of 
incidence. The ordinary and extraordinary electric fields, wavevectors and ray directions 
are also determined explicitly. 

Some special configurations of practical interest were considered. These help also in 
providingcounter-examples to conjectures one might make, for example that the cross- 
reflection terms rp and rsp are zero whenever E" and Ee are orthogonal (this is not true 
ingenera1,sinceE'. Ec = Oatnormalincidence(from(70)),butrpandr,arenotzero). 
It is not even true that rp = rsp whenever Eo. E' = 0. Another expectation, that the 
Brewster angle Os will lie between arctan (no /n l )  and arctan (E&), is also false. In fact 
zero reflectance of the p polarization need not exist in some circumstances, in contrast 
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to reflection from non-absorbing isotropic media. But arctan (n,/nl)  is an upper or lower 
bound for 0, in some special geometries; see for example subsection 5.2. 

Gaussian units have been used for simplicity, and to avoid confusion between 
E,  ( = n z )  and E,, (the permittivity of the vacuum). AU formulae from equation (11) on 
are unchanged in SI units, provided the dielectric constants are interpreted as the 
dimensionless ratios E/&,,. 

In numerical work it is convenient to use no/nl and n,/nl as the effective ordinary 
and extraordinary refractive indices, and also to set k = w / c  = 1, in which case q1 and 
Kmay be set equal to cos 0 and sin 8 respectively. 
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